If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7r^2+7r-140=0
a = 7; b = 7; c = -140;
Δ = b2-4ac
Δ = 72-4·7·(-140)
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3969}=63$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-63}{2*7}=\frac{-70}{14} =-5 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+63}{2*7}=\frac{56}{14} =4 $
| x/8 =9/5 | | 12x+15=7x+2 | | |2x+3|+7=13 | | 14x-6=5x+66 | | 24+24p=0 | | x-2/3+2x-8/4=2x-12/2 | | -21n+28=14 | | (4x-3)/(10)-(2-x)/(5)=(3/10) | | -20=4+4v+2v | | 16x+24+4x=36 | | 5(x+3)=105 | | 3(7-7x)=-168 | | 6+3n+2n=-4 | | 14y-84=-42 | | 4^x+3=5^ | | 4+k/3=-6 | | 3+9-18+x=x+12-7 | | (-8)^2+5x=9x+4^3 | | (8/6)=((6n+9)/9) | | -9+2(4x+12)=4(1-3x)-13 | | -6x+4=—16-x | | 8y-2(y-3)=9 | | 88/21=2/3n+10/7n | | 63x2+44x-33=0 | | 54+3x=2x^2 | | 5b-2=10+4(b+11) | | 2/3+3t/4=3/6 | | 5(3c-1)-18=13c+5 | | -9+2(4x+12)=4(1-3)-13 | | 6x-11=4x+6 | | 2/3+3t/4=3t/6 | | -(3+7p)=-7p |